Alkane Reactions
The alkanes and cycloalkanes, with the exception of cyclopropane, are probably the least chemically reactive class of organic compounds. Despite their relative inertness, alkanes undergo several important reactions that are discussed in the following section.
1. Combustion
The combustion of carbon compounds, especially hydrocarbons, has been the most important source of heat energy for human civilizations throughout recorded history. The practical importance of this reaction cannot be denied, but the massive and uncontrolled chemical changes that take place in combustion make it difficult to deduce mechanistic paths. Using the combustion of propane as an example, we see from the following equation that every covalent bond in the reactants has been broken and an entirely new set of covalent bonds have formed in the products. No other common reaction involves such a profound and pervasive change, and the mechanism of combustion is so complex that chemists are just beginning to explore and understand some of its elementary features.
CH3-CH2-CH3 + 5 O2 ——> 3 CO2 + 4 H2O + heat
Two points concerning this reaction are important:
1. Since all the covalent bonds in the reactant molecules are broken, the quantity of heat evolved in this reaction is related to the strength of these bonds (and, of course, the strength of the bonds formed in the products). Precise heats of combustion measurements can provide useful iinformation about the structure of molecules.
2. The stoichiometry of the reactants is important. If insufficient oxygen is supplied some of the products will consist of carbon monoxide, a highly toxic gas.
CH3-CH2-CH3 + 4 O2 ——> CO2 + 2 CO + 4 H2O + heat
Tidak ada komentar:
Posting Komentar